• Users Online: 271
  • Print this page
  • Email this page
Year : 2020  |  Volume : 10  |  Issue : 1  |  Page : 35-41

A novel non-enzymatic biosensor based on Ti-metallic glass thin film: The blood glucose oxidation approach

1 Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
2 Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Mohsen Sarafbidabad
Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmss.JMSS_15_19

Rights and Permissions

Background: Material selection is a key issue for the fabrication of non-enzymatic electrode in glucose biosensors. Metallic glass (MG) as an advanced innovative material can provides many basic structural requirements of electrodes. A novel non-enzymatic biosensor based on Ti57Cu28{Zr0.95−Hf0.05}XSi15-XMG (Ti-MG) thin film was introduced for glucose oxidation. Methods: The Ti-MG thin film was deposited on the carbon substrate of screen-printed carbon electrode (SPCE), and the Ti-MG modified SPCE was fabricated as Ti-MG/SPCE. The morphology and structure of the Ti-MG thin film were characterized by field emission scanning electron microscope and X-ray diffraction. Electrochemical evaluations were studied by electrochemical impedance spectroscopy and cyclic voltammetry. Results: The Ti-MG was sputtered on the carbon substrate in the form of a porous spongy thin film with 285 nm thickness and nanoparticles with average diameter size of 110 nm. The Ti-MG/SPCE showed low charge transfer resistance to the electron transfer and high electrocatalytic activity toward the oxidation of glucose in PBS (pH = 7.4) solution. This biosensor exhibited good analytical performance with a linear range from 2 to 8 mM glucose and sensitivity of 0.017 μA mM−1. Conclusion: The experimental results indicate that Ti-MG thin film has a high ability to electron transfer and glucose oxidation for the development of non-enzymatic glucose biosensors.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded103    
    Comments [Add]    

Recommend this journal