• Users Online: 14
  • Print this page
  • Email this page

    Article Cited by others


A comparative study on preprocessing techniques in diabetic retinopathy retinal images: Illumination correction and contrast enhancement

Rasta Seyed Hossein, Partovi Mahsa Eisazadeh, Seyedarabi Hadi, Javadzadeh Alireza

Year : 2015| Volume: 5| Issue : 1 | Page no: 40-48

   This article has been cited by
1 A robust method for the automatic location of the optic disc and the fovea in fundus images
Roberto Romero-Oraá,María García,Javier Oraá-Pérez,María I. López,Roberto Hornero
Computer Methods and Programs in Biomedicine. 2020; : 105599
[Pubmed]  [Google Scholar] [DOI]
2 A novel method for optic disc detection in retinal images using the cuckoo search algorithm and structural similarity index
Yasin Kaya
Multimedia Tools and Applications. 2020;
[Pubmed]  [Google Scholar] [DOI]
3 Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network
Zhan Wu,Gonglei Shi,Yang Chen,Fei Shi,Xinjian Chen,Gouenou Coatrieux,Jian Yang,Limin Luo,Shuo Li
Artificial Intelligence in Medicine. 2020; 108: 101936
[Pubmed]  [Google Scholar] [DOI]
4 An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation
Shailesh Kumar,Abhinav Adarsh,Basant Kumar,Amit Kumar Singh
Optics & Laser Technology. 2020; 121: 105815
[Pubmed]  [Google Scholar] [DOI]
5 New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks
Jianbo Mao,Yuhao Luo,Kun Chen,Jimeng Lao,Lingæan Chen,Yirun Shao,Caiyun Zhang,Mingzhai Sun,Lijun Shen
Clinical & Experimental Ophthalmology. 2019;
[Pubmed]  [Google Scholar] [DOI]
6 Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors
Neha Gour,Pritee Khanna
Pattern Recognition Letters. 2019;
[Pubmed]  [Google Scholar] [DOI]
7 Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images
Roberto Romero-Oraá,Jorge Jiménez-García,María García,María I. López-Gálvez,Javier Oraá-Pérez,Roberto Hornero
Entropy. 2019; 21(4): 417
[Pubmed]  [Google Scholar] [DOI]
8 Evolution of optic nerve photography for glaucoma screening: a review
Jonathan S Myers,Scott J Fudemberg,Daniel Lee
Clinical & Experimental Ophthalmology. 2018; 46(2): 169
[Pubmed]  [Google Scholar] [DOI]
9 Geometric mean filter with grayscale morphological method to enhance the RNFL thickness in the SD-OCT images
T. Senthil Kumar,K. Helen Prabha
Multimedia Tools and Applications. 2018; 77(8): 10285
[Pubmed]  [Google Scholar] [DOI]
10 Contrast Enhancement Based on Fusion Method: A Review
Wan Azani Mustafa,Mohamed Mydin M. Abdul Kader
Journal of Physics: Conference Series. 2018; 1019: 012025
[Pubmed]  [Google Scholar] [DOI]
11 Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms
Parham Khojasteh,Behzad Aliahmad,Dinesh K. Kumar
BMC Ophthalmology. 2018; 18(1)
[Pubmed]  [Google Scholar] [DOI]
12 Multiscale self-quotient filtering for an improved unsupervised retinal blood vessels characterisation
D. Relan,R. Relan
Biomedical Engineering Letters. 2018; 8(1): 59
[Pubmed]  [Google Scholar] [DOI]
13 Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases
Delia Cabrera DeBuc,Gabor Mark Somfai,Akos Koller
American Journal of Physiology-Heart and Circulatory Physiology. 2017; 312(2): H201
[Pubmed]  [Google Scholar] [DOI]
14 Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients
Mahsa Partovi,Seyed Hossein Rasta,Alireza Javadzadeh
Journal of Analytical Research in Clinical Medicine. 2016; 4(2): 104
[Pubmed]  [Google Scholar] [DOI]
15 Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy
Seyed Hossein Rasta,Shima Nikfarjam,Alireza Javadzadeh
BioImpacts. 2016; 5(4): 183
[Pubmed]  [Google Scholar] [DOI]
16 Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images
Mark J. J. P. van Grinsven,Bram van Ginneken,Carel B. Hoyng,Thomas Theelen,Clara I. Sanchez
IEEE Transactions on Medical Imaging. 2016; 35(5): 1273
[Pubmed]  [Google Scholar] [DOI]


Read this article