• Users Online: 9836
  • Print this page
  • Email this page

    Article Cited by others

ORIGINAL ARTICLE

Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier

Amin Morteza Moradi, Kermani Saeed, Talebi Ardeshir

Year : 2015| Volume: 5| Issue : 1 | Page no: 49-58

   This article has been cited by
 
1 SDCT-AuxNet : DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier for Cancer Diagnosis
Shiv Gehlot,Anubha Gupta,Ritu Gupta
Medical Image Analysis. 2020; : 101661
[Pubmed]  [Google Scholar] [DOI]
2 A Review of Automated Methods for the Detection of Sickle Cell Disease
Pradeep Kumar Das,Sukadev Meher,Rutuparna Panda,Ajith Abraham
IEEE Reviews in Biomedical Engineering. 2020; 13: 309
[Pubmed]  [Google Scholar] [DOI]
3 Detection and Classification of Immature Leukocytes for Diagnosis of Acute Myeloid Leukemia Using Random Forest Algorithm
Satvik Dasariraju,Marc Huo,Serena McCalla
Bioengineering. 2020; 7(4): 120
[Pubmed]  [Google Scholar] [DOI]
4 An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell
Partha Pratim Banik,Rappy Saha,Ki-Doo Kim
Expert Systems with Applications. 2020; : 113211
[Pubmed]  [Google Scholar] [DOI]
5 FAB classification of acute leukemia using an ensemble of neural networks
Jyoti Rawat,Jitendra Virmani,Annapurna Singh,H. S. Bhadauria,Indrajeet Kumar,J. S. Devgan
Evolutionary Intelligence. 2020;
[Pubmed]  [Google Scholar] [DOI]
6 Cell Population Data–Driven Acute Promyelocytic Leukemia Flagging Through Artificial Neural Network Predictive Modeling
Rana Zeeshan Haider,Ikram Uddin Ujjan,Tahir S. Shamsi
Translational Oncology. 2020; 13(1): 11
[Pubmed]  [Google Scholar] [DOI]
7 Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,Brij Mohan Kumar Singh
Multimedia Tools and Applications. 2019; 78(13): 17879
[Pubmed]  [Google Scholar] [DOI]
8 Image Processing Approach for Detection of Leukocytes in Peripheral Blood Smears
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,Brij Mohan Kumar Singh
Journal of Medical Systems. 2019; 43(5)
[Pubmed]  [Google Scholar] [DOI]
9 Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,Brij Mohan Kumar Singh
Biocybernetics and Biomedical Engineering. 2019; 39(2): 382
[Pubmed]  [Google Scholar] [DOI]
10 Design of medical database for medical decision support system in laboratory diagnosis of acute leukaemia
V G Nikitaev,A N Pronichev,E V Polyakov,I O Kudryavtseva
Journal of Physics: Conference Series. 2019; 1189: 012029
[Pubmed]  [Google Scholar] [DOI]
11 Method of recognition of the blasts nuclei structure by using light microscopy and computer data processing
V G Nikitaev,A N Pronichev,E V Polyakov,V V Dmitrieva,A V Mozhenkova,N N Tupitsin,M A Frenkel,V Y Selchuk,O P Grebennikova,G V Titova
Journal of Physics: Conference Series. 2019; 1189: 012043
[Pubmed]  [Google Scholar] [DOI]
12 Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,Brij Mohan Kumar Singh
Australasian Physical & Engineering Sciences in Medicine. 2019; 42(2): 627
[Pubmed]  [Google Scholar] [DOI]
13 Recent computational methods for white blood cell nuclei segmentation: A comparative study
Alan R. Andrade,Luis H.S. Vogado,Rodrigo de M.S. Veras,Romuere R.V. Silva,Flávio H.D. Araujo,Fátima N.S. Medeiros
Computer Methods and Programs in Biomedicine. 2019; 173: 1
[Pubmed]  [Google Scholar] [DOI]
14 Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features
Mohamadreza Abbasi,Saeed Kermani,Ardeshir Tajebib,Morteza Moradi Amin,Manije Abbasi
IET Image Processing. 2019;
[Pubmed]  [Google Scholar] [DOI]
15 Automated Decision Support System for Detection of Leukemia from Peripheral Blood Smear Images
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,Brij Mohan Kumar Singh,I Sandhya
Journal of Digital Imaging. 2019;
[Pubmed]  [Google Scholar] [DOI]
16 Automated acute lymphoblastic leukaemia detection system using microscopic images
Komal Nain Sukhia,Abdul Ghafoor,Muhammad Mohsin Riaz,Naima Iltaf
IET Image Processing. 2019;
[Pubmed]  [Google Scholar] [DOI]
17 Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia
Sarmad Shafique,Samabia Tehsin
Computational and Mathematical Methods in Medicine. 2018; 2018: 1
[Pubmed]  [Google Scholar] [DOI]
18 Classification of acute lymphoblastic leukemia using deep learning
Amjad Rehman,Naveed Abbas,Tanzila Saba,Syed Ijaz ur Rahman,Zahid Mehmood,Hoshang Kolivand
Microscopy Research and Technique. 2018; 81(11): 1310
[Pubmed]  [Google Scholar] [DOI]
19 Peripheral blood smear analysis using image processing approach for diagnostic purposes: A review
Roopa B. Hegde,Keerthana Prasad,Harishchandra Hebbar,I Sandhya
Biocybernetics and Biomedical Engineering. 2018; 38(3): 467
[Pubmed]  [Google Scholar] [DOI]
20 The method of segmentation of leukocytes in information-measuring systems on the basis of light microscopy
V G Nikitaev,A N Pronichev,E V Polyakov,Yu V Zaharenko
Journal of Physics: Conference Series. 2018; 945: 012006
[Pubmed]  [Google Scholar] [DOI]
21 A novel white blood cells segmentation algorithm based on adaptive neutrosophic similarity score
A. I. Shahin,Yanhui Guo,K. M. Amin,Amr A. Sharawi
Health Information Science and Systems. 2018; 6(1)
[Pubmed]  [Google Scholar] [DOI]
22 A novel method to detect bleeding frame and region in wireless capsule endoscopy video
P. Sivakumar,B. Muthu Kumar
Cluster Computing. 2018;
[Pubmed]  [Google Scholar] [DOI]
23 The influence of physical factors on recognizing blood cells in the computer microscopy systems of acute leukemia diagnosis
V G Nikitaev,A N Pronichev,E V Polyakov,V V Dmitrieva,N N Tupitsyn,M A Frenkel,A V Mozhenkova
Journal of Physics: Conference Series. 2017; 784: 012042
[Pubmed]  [Google Scholar] [DOI]
24 Mathematical model of the chromatin structure of the nuclei of blood cells
V G Nikitaev,O V Nagornov,A N Pronichev,V V Dmitrieva,E V Polyakov
Journal of Physics: Conference Series. 2017; 788: 012056
[Pubmed]  [Google Scholar] [DOI]
25 A method for estimating the accuracy of measurements of optical characteristics of the nuclei of blood cells in the diagnosis of acute leukemia
E V Polyakov,V G Nikitaev
Journal of Physics: Conference Series. 2017; 798: 012128
[Pubmed]  [Google Scholar] [DOI]
26 Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Jyoti Rawat,Annapurna Singh,H. S. Bhadauria,Jitendra Virmani,J. S. Devgun
Multimedia Tools and Applications. 2017; 76(18): 19057
[Pubmed]  [Google Scholar] [DOI]
27 Computer microscopy in lymphoma diagnostics
A V Mozhenkova,N N Tupitsin,M A Frenkel,N A Falaleeva,V G Nikitaev,E V Polyakov
Journal of Physics: Conference Series. 2017; 798: 012126
[Pubmed]  [Google Scholar] [DOI]
28 Application of texture analysis methods to computer microscopy in the visible range of electromagnetic radiation
V. G. Nikitaev,A. N. Pronichev,E. V. Polyakov,V. V. Dmitrieva,N. N. Tupitsyn,M. A. Frenkel,A. V. Mozhenkova
Bulletin of the Lebedev Physics Institute. 2016; 43(10): 306
[Pubmed]  [Google Scholar] [DOI]
29 Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis
Morteza MoradiAmin,Ahmad Memari,Nasser Samadzadehaghdam,Saeed Kermani,Ardeshir Talebi
Microscopy Research and Technique. 2016; 79(10): 908
[Pubmed]  [Google Scholar] [DOI]

 

Read this article